
Serial-robot dynamics algorithms for moderately
large numbers of joints

V. Mata a,*, S. Provenzano b, F. Valero a, J.I. Cuadrado a

a Departamento de Ingenier�ııa Mec�aanica y de Materiales, Universidad Polit�eecnica de Valencia, Camino de Vera s/n,
46022 Valencia, Spain

b Escuela de Ingenier�ııa Mec�aanica, Universidad de Los Andes, Av. D. Tulio Febres Cordero, 5101, M�eerida, Venezuela

Received 8 May 2001; accepted 28 January 2002

Abstract

A method for solving the complete dynamic problem in robots with rigid links and ideal joints using the
Gibbs–Appell equations as starting point is presented. The inverse dynamic problem is solved through a
algorithm OðnÞ, where tensor notation is used. The terms of the generalized inertia matrix are calculated by
means of the Hessian of the Gibbs function with respect to generalized accelerations, and a recursive al-
gorithm of order Oðn2Þ is developed. Proposed algorithms are computationally efficient for serial-robots
with moderately large numbers of joints. The numerical stability of the proposed algorithms is analyzed
and compared with those of other methods by the use of numerical examples. � 2002 Elsevier Science Ltd.
All rights reserved.

Resumen

En este art�ııculo se presenta un m�eetodo para la resoluci�oon del problema din�aamico en robots industriales
con barras r�ııgidas y pares cinem�aaticos ideales. Los algoritmos propuestos para la resoluci�oon del problema
din�aamico se han obtenido tomando como punto de partida las ecuaciones de Gibbs–Appell. El problema
din�aamico inverso se ha resuelto mediante un algoritmo de complejidad OðnÞ, en su desarrollo se ha em-
pleado notaci�oon tensorial. Los t�eerminos de la matriz de inercia generalizada se han obtenido mediante el
Hessiano de la funci�oon de Gibbs, respecto a las aceleraciones generalizadas, habi�eendose desarrollado un
algoritmo recursivo Oðn2Þ. Los algoritmos propuestos se han demostrado eficaces para robots con un
n�uumero moderadamente grande de grados de libertad. Se ha analizado la estabilidad computacional de los
algoritmos. � 2002 Elsevier Science Ltd. All rights reserved.

*
Corresponding author: Tel.: +34-96-387-76-21; fax: +34-96-387-76-29.

E-mail address: vmata@mcm.upv.es (V. Mata).

0094-114X/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0094-114X(02)00030-7

Mechanism and Machine Theory 37 (2002) 739–755
www.elsevier.com/locate/mechmt

mail to: vmata@mcm.upv.es

1. Introduction

In the last three decades numerous investigators have used different principles of dynamics in
order to obtain the equations that model the dynamic behavior of robot arms. The first formu-
lations to be developed were based on a closed form representation of the equations, and the
Lagrange–Euler (L–E) equations were used preferentially for this purpose. These formulations
were found to be inefficient due to the high number of algebraic operations involved. A solution to
this problem was found with the use of relationships present in the dynamic equations. The
Newton–Euler (N–E) equations were found to be the most appropriate dynamic principle for this
type of formulation and they have been used to develop the most efficient formulations that are
known. Other formulations, based on Kane’s equations, have yielded algorithms whose com-
putational complexity is similar to that found in formulations based on N–E equations. The use of
dynamic principles different from those employed in formulations based on L–E, N–E or Kane’s
equations has been minor and, furthermore, has produced formulations of high computational
complexity. Currently it is believed that the use of diverse dynamic principles will lead to similar
formulations of equivalent computational complexity. This has been partially proved by applying
the appropriate relationships to the L–E equations in order to obtain an equivalent formulation to
that given by the N–E equations, although a greater effort is required in order to reach the final
equations [1]. It is for this reason that most of the formulations that produce efficient algorithms
have been developed from the N–E equations. Featherstone and Orin [2] make a detailed review
of these methods and of the derived algorithms.

The Gibbs–Appell (G–A) equations are one of the principles that have been used the least for
the resolution of the dynamic problem of manipulating robots. Discovered independently by
Gibbs in 1879 and Appell in 1899, it is said that ‘‘they probably are the simplest and most
comprehensive form of motion equation ever discovered’’ [3]. The simple form with which these
equations deal with mechanical systems subjected to holonomic and non-holonomic type con-
straints is also emphasized in the specialized technical literature. Surprisingly, a bibliographical
review of the literature on this area reveals the limited use of the G–A equations in modern
dynamics. A few years ago, the supposed relationship of the G–A equations and Kane’s dynamic
equations caused a good number of works and commentaries on the matter (see [4–7]). More
recently, Udwadia and Kalaba published a work in which new forms of the G–A equations were
developed [8]. In the field of robotics, Popov proposed a method, later developed by Vukobratovic
and Potkonjak [9], in which the G–A equations were used to develop a closed form representation
of high computational complexity. This method was used by Desoyer and Lugner [10] to solve, by
means of a recursive formulation Oðn2Þ, the inverse dynamic problem using the Jacobian matrix
of the manipulator, with the purpose of avoiding the explicit development of the partial deriva-
tives. Another approach was suggested by Vereshcahagin [11] that proposed manipulator motion
equations from Gauss’ principle and Gibbs’ function. This approach was used by Rudas and Toth
[12] to solve the inverse dynamic problem of robots. Recently, Mata et al. [13] presented a for-
mulation of order OðnÞ which solves the inverse dynamic problem and establishes recursive
relations that involve a reduced number of algebraic operations.

The algorithms that model the dynamic behavior of manipulators are divided in two types:
algorithms that solve the inverse dynamic problem and those that give solution to the forward
dynamic problem. In the former, the forces exerted by the actuators are obtained algebraically for

740 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

certain configurations of the manipulator (position, velocity and acceleration). On the other hand,
the forward dynamic problem computes the acceleration of the joints of the manipulator once the
forces exerted by the actuators are given. This problem is part of the process that must be followed
to perform the simulation of the dynamic behavior of the manipulator. This process is completed
after it calculates the velocity and position of the joints by means of a process of numerical in-
tegration in which the acceleration of the joints and the initial configuration are data input to the
problem.

The first efficient recursive algorithm for the solution of the inverse dynamic problem was
proposed by Luh et al. [14]. This algorithm, based on the N–E equations, has been improved
repeatedly throughout the years [2]. Other authors have developed efficient recursive algorithms to
solve the inverse dynamic problem based on other principles of dynamics. As examples of these we
have the work of Hollerbach [15] that uses the L–E equations; and those of Kane and Levinson
[16], and Angeles et al. [17], which use Kane’s equations. On the other hand, the algorithms
developed to solve the forward dynamic problem use, regardless of the dynamics principle from
which they are derived, one of the following approaches:

• Calculation of the accelerations of the joints by means of the proposal and solution of a system
of simultaneous equations.

• Recursive calculation of the acceleration of the joints, propagating motion and constraint
forces throughout the mechanism.

The algorithms derived from the methods that use the first approach require the calculation
of the generalized inertia matrix and the bias vector. The generalized inertia matrix is also used
in advanced control schemes, as well as in parameter estimation procedures. For this reason
its calculation, by means of simple and efficient procedures, is beneficial to other fields and not
only to mechanical systems motion simulation. The generalized inertia matrix can be ob-
tained through the Hessian of the kinetic energy of the mechanical system with respect to gen-
eralized velocities; however, the most computationally efficient algorithms are not based on
this procedure. The best known method that follows this first approach was proposed by
Walker and Orin [18] which developed (using N–E equations) the method of the composed rigid
body (CRBA), in which the generalized inertia matrix is obtained recursively with a complexity
Oðn2Þ. Angeles and Ma [19] proposed another method that follows this approach which is based
on the calculation of the natural orthogonal complement (NOC) of the manipulator kine-
matic constraint equations with a complexity Oðn3Þ, using Kane’s equations to obtain the bias
vector.

On the other hand, algorithms derived from methods that use the second approach usually have
a complexity OðnÞ. These algorithms do not obtain the generalized inertia matrix, and for this
reason their application is limited to system motion simulations. The best known method among
those that use the second approach is the articulated body (ABA) method developed by Feath-
erstone [20]. The number of required algebraic operations is inferior to those needed in the CRBA
method, but only for systems that contain nine or more bodies. In [21], Saha performed sym-
bolically the Gaussian elimination to obtain the decomposition of the generalized inertia matrix.
As an application of this decomposition, he proposed an OðnÞ forward dynamic algorithm with a
computational complexity very similar to that of [20].

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 741

The differences between the CRBA and ABA methods have been studied by some investigators
during the last decade. Ascher et al. [22] demonstrated, by solving the forward dynamic problem
in a system made up of two bodies with a high condition number, that the precision of the results
obtained with the ABA method is higher than in the CRBA method, due to inherent truncating
problems in the CRBA method.

In this work the solution of the forward and inverse dynamic problems of robot manipulators
are considered using the G–A equations. The resolution of the forward dynamic problem is done
by means of a formulation that follows the first approach. In order to obtain the generalized
inertia matrix, a recursive algorithm Oðn2Þ has been developed. The numerical results obtained by
this algorithm are compared with those of the ABA and CRBA methods, with the purpose of
determining their numerical precision. A modified Denavit–Hartenberg (D–H) notation is used in
the kinematic recursive equations [19]. The work is organized as follows:

• In Section 2 a recursive formulation is developed to solve the inverse dynamic problem.
• In Section 3 a formulation is developed to solve the forward dynamic problem.
• The algorithms derived from the proposed formulations are shown in Section 4.
• In Section 5 an example is used to analyze the numerical errors that the method produces in the

solution of the proposed forward dynamic problem; additionally, as an example and validation,
we perform a simulation of the motion of a PUMA robot that follows a pre-established trajec-
tory.

• Finally, in Section 6, the conclusions of the work are presented.

2. The inverse dynamic problem

The G–A dynamic equations [3] come from the definition of Gibbs’ function which, written in
general form for an arbitrary body composed of n particles of mass mi and acceleration ai in an
inertial coordinate frame, is:

G ¼ 1
2

Xn
i¼1

mia2
i ð1Þ

It is necessary to obtain this function for a system of rigid bodies expressed in the reference
systems that are local to the links, so the rotation matrices are used (i�1Ri)

Gi ¼ 1
2
mi

0Ri
i€~rr~rri

� �T 0

Ri
i€~rr~rri þ 1

2
0Ri

i _~xx~xxi

� �T 0

Ri
iIi

0Ri

� �T 0Ri
i _xi
!xi
!� �

þ 0Ri
i _~xx~xxi

� �T
0Ri

i~xxi

n
0Ri

iIi
0Ri

� �T 0
Ri

i~xxi

h io
þ fið~xxiÞ ð2Þ

where i€~rr~rri is the acceleration of the center of gravity for body ith, i~xxi its angular velocity, i _~xx~xxi its
angular acceleration and iIi the inertial tensor referred to its center of mass, all of them expressed
in the local reference system. The function fið~xxiÞ comprises all expressions that do not include
generalized accelerations, there is no need to know it (see Eq. (5)).

742 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

Simplifying, Gibbs’ function is reduced to the following expression:

Gi ¼ 1
2
mi

i€~rr~rri
� �T

i€~rr~rri þ 1
2

i _~xx~xxi

� �T
iIi

i _~xx~xxi þ i _~xx~xxi

� �T
i~xxi

�
� iIi

i~xxi

�
ð3Þ

For a system composed of n bodies, the total Gibbs’ function is given by

G ¼
Xn
i¼1

Gi ði ¼ 1; 2; . . . ; nÞ ð4Þ

The G–A equations are obtained by taking the derivative of Gibbs’ function with respect to the
generalized accelerations €qqj:

sj ¼
Xn
i¼j

oGi

o€qqj
ðj ¼ 1; 2; . . . ; nÞ ð5Þ

therefore

sj ¼
Xn
i¼j

mi
oi€~rr~rri
o€qqj

 !T

i€~rr~rri

8<
: þ oi _~xx~xxi

o€qqj

 !T

iIii
_~xx~xxi þ

oi _~xx~xxi

o€qqj

 !T

i~xxi

h
� ðiIii~xxiÞ

i9=
; ð6Þ

where~ss is the generalized force vector. The calculation of the partial derivatives in the previous
expression is simplified if the following series of suppositions are into:

oi _~xx~xxi

o€qqj
¼ 0; for i < j ð7aÞ

oi _~xx~xxi

o€qqj
¼ iRi�1

i�1Ri�2 � � � j�1Rj
oj _~xx~xxj

o€qqj
; for i > j ð7bÞ

oi _~xx~xxi

o€qqj
¼ i~zzi; for i ¼ j ð7cÞ

oi€~rr~rri
o€qqk

¼ oi _~xx~xxi

o€qqk
� i~rrk;i or; in tensor notation;

oi €~riri~riri
o€qqk

¼ oi _~xx~xxi

o€qqk

 !
i~rrk;i ð7dÞ

where i~rrk;i is the position vector that goes from the origin of the kth body’s local reference system
to ith body’s center of gravity, i~rrk;i is the associated skew-symmetric tensor, and i~zzi ¼ ½ 0 0 1
T.
In these suppositions, it is assumed that the manipulator is made up of revolute joints; in case
joint i is prismatic, the last expression contains an additional term:

oi€~rr~rri
o€qqk

¼ oi _~xx~xxi

o€qqk
� i~rrk;i þ i~zzi; or; in tensor notation;

oi€~rr~rri
o€qqk

¼ oi _~xx~xxi

o€qqk

 !T

i~rrk;i þ i~zzi ð7eÞ

In Eq. (6) two terms are recognized: the first one is the force that acts on the body’s center of
mass, and the second term corresponds to the moment that acts on the body with respect to the
center of mass. In tensor notation the simplification of the second term is feasible, which reduces,

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 743

in addition, the number of necessary algebraic operations for its computation. Taking into ac-
count the mentioned simplification, Eq. (6) can be written as follows:

sj ¼
Xn
i¼j

oi€~rr~rri
o€qqj

 !T

i~ffi

2
4

3
5þ

Xn
i¼j

oi _~xx~xxi

o€qqj

 !T

i~tti

2
4

3
5 ð8Þ

where,

i~ffi ¼ mi
i€~rr~rri
�

þ i~gg
�

ð9Þ

In the last expression, i~gg denotes the acceleration of gravity expressed in the local coordinate
system bound to body i. The moment that acts on body i with respect to its center of mass can be
simplified with the aid of tensor algebra: 1

i~tti ¼ iXi
iJi � iXi

iJið ÞT ð10Þ
where, i~tti is skew-symmetric tensor representation of the i~tti vector, iJi is Euler’s tensor for a rigid
body whose computation is made off-line by means of the following expression,

iJi ¼ 1
2
trace iIi½
13�3 � iIi ð11Þ

and iXi is the angular acceleration tensor,

iXi ¼ i ~_xx_xxi þ i ~xx2
i ð12Þ

Eq. (8) can be further simplified by using the following expression:

oi€~rr~rri
o€qqj

 !T

¼ oi _~xx~xxi

o€qqj

 !T

i~rrj;i

Replacing in Eq. (8) and simplifying:

sj ¼
Xn
i¼j

oi _~xx~xxi

o€qqj

 !T

i~rrj;ii~ffi
�2

4 þ i~tti
�35 ð13Þ

If an algorithm for the computation of the generalized forces is formulated using Eq. (13), it
will have a computational complexity Oðn2Þ. The procedure to follow in order to obtain an al-
gorithm that involves a complexity OðnÞ should find a recurrent relationship that eliminates the
summation in the equation. The following expressions possess a recurrent relationship that is able
to effectively reduce the computational complexity of the resulting algorithm:

sj ¼
oj _~xx~xxj

o€qqj

 !T

j~vvj ð14Þ

where,

j~vvj ¼ j~rrj;jj~ffj þ j~ssj;jþ1
j~//j þ j~ttj þ jRjþ1

jþ1~vvjþ1 ð15Þ

1 A proof of this statement and a definition of Euler’s tensor for a rigid body, can be found in Ref. [23], pp. 109–111.

744 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

and

j~//j ¼ jRjþ1
jþ1~ffjþ1

�
þ jþ1~//jþ1

�
ð16Þ

In (15) j~ssj;k is the skew-symmetric tensor associated with the position vector j~ssj;k that goes from the
origin of the jth body’s local reference system to the kth. Expressions (14)–(16) provide the basis
for the elaboration of the algorithm presented in Section 4.1, which solves the inverse dynamic
problem of robot manipulators with a complexity of order OðnÞ.

3. The forward dynamic problem

In the previous section, the G–A equations are described as function of quantities expressed in
Cartesian coordinates. It is possible to write the G–A equations based on generalized coordinates
and their time derivatives. This formulation was obtained by Vukobratovic and Potkonjak [9].
These equations are contained in the following matrix expression:

Dð~qqÞ€~qq~qq ¼~ss � ~CCð~qq; _~qq~qqÞ þ ~GGð~qqÞ ð17Þ

where the generalized inertia matrix (D) and the bias vector (~CC þ ~GG), can be calculated by means
of recursive algorithms developed separately, and~ss represents the generalized forces vector. This
equation, similar to that obtained from other dynamics principles, constitutes the basis of the
method for the resolution of the forward dynamic problem.

In this work, the bias vector is calculated by using the algorithm developed here to solve the
inverse dynamic problem, in which the terms corresponding to the joint accelerations have been
eliminated, according to the method proposed by Walker and Orin [18].

In order to obtain the generalized inertia matrix, a new method based on the G–A equations is
developed. The development of the method begins with Eq. (17), which can be written in the
following way:

oG

o€~qq~qq
¼ Dð~qqÞ€~qq~qqþ ~CCð~qq; _~qq~qqÞ � ~GGð~qqÞ ð18Þ

If we take the partial derivative of the previous equation once again, an expression is obtained
for the calculation of the generalized inertia matrix by means of Gibbs’ function Hessian matrix:

Djk ¼
o2G

o€qqjo€qqk
ð19Þ

where D is the system’s generalized inertia matrix. From the previous expression a simple algo-
rithm of order Oðn3Þ for the calculation of D is obtained in a natural way, although it is possible
to reduce it to a recursive algorithm of order Oðn2Þ. The procedure used to find the expression that
allows us to calculate the coefficients of the generalized inertia matrix, by means of a process of
successive partial derivatives of Gibbs’ function, is simplified taken into account:

o

o€qqj

oi _~xx~xxi

o€qqk
¼ o

o€qqj
i~zzi ¼ 0

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 745

o

o€qqj

oi€~ss~ssi
o€qqk

¼ o

o€qqj
iRi�1

oi�1€~ss~ssi�1

o€qqk

"
þ oi�1 _~xx~xxi�1

o€qqk
� i�1~ssi�1;i

#
¼ 0 ð20Þ

o

o€qqj

oi€~rr~rri
o€qqk

¼ o

o€qqj

oi€~ss~ssi
o€qqk

þ oi _~xx~xxi

o€qqk
� i~rri;i

!
¼ 0

where, i€~ss~ssi is the acceleration of the origin of ith body’s local reference system. In this case the
expressions have the same form for prismatic and revolute couples. Using Eq. (20), the expres-
sion for the calculation of the coefficients of the generalized inertia matrix takes the following
form:

Djk ¼
Xn
i¼j

mi
oi€~rr~rri
o€qqk

 !T

oi€~rr~rri
o€qqj

2
4 þ oi _~xx~xxi

o€qqk

 !T

iIi
oi _~xx~xxi

o€qqj

3
5 ð21Þ

The use of the expression (21) to develop an algorithm applicable to manipulators, that is
computationally achievable, requires the study of the recurrent relationships that exist between
their elements, since the direct application of the expression would produce an algorithm with a
high number of operations. Taking into account Eqs. (7a)–(7e), and the properties of cross
products, then expression (21) can be written as:

Djk ¼
Xn
i¼j

iRk
ok _~xx~xxk

o€qqk

 !T

iIi

�2
4 � mi

i~rri;ii~rrj;i � mi
i~ssk;ii~ssj;i

� oi _~xx~xxi

o€qqj

3
5 ð22Þ

In Section 4.2 an algorithm for the calculation of the generalized inertia matrix is presented
based on this expression.

4. Proposed algorithms

4.1. An algorithm to solve the inverse dynamic problem

Now we shall present an algorithm that results from the expressions developed in Section 2.
The algorithm only contemplates manipulators composed of connected rigid bodies by means of
ideal revolute couples. Also, the premultiplication of a vector by a rotation matrix does not take
place in the way indicated in the expressions, but trigonometric identities are used which allow a
reduction of the number of operations. Additionally, the use of this method makes the calculation
of the components of the rotation matrix unnecessary, producing additional savings (see [24] for
example). In the following description, each specified algorithmic expression is accompanied by
info that indicates the number of algebraic operations that are involved, showing separately the
products (M) and the sums (A). At the end of each section there is a summary and the total
complexity of the proposed algorithm is compared with other well-known algorithms.
Step 1: In this algorithm the acceleration of gravity is introduced by means of the acceleration

of the base of the robot, such as proposed by Luh et al. [14], since this procedure improves the
computational complexity of the formulation.

746 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

Initialize
0€~ss~ss0 ¼ �g0~zz0 ðg ¼ gravityÞ
0€~rr~rr0 ¼ 0€~ss~ss0
For i ¼ 1; 2; . . . ; n, do

i~xxi�1 ¼ iRi�1
i�1~xxi�1 8M, 4A

i~xxi ¼ i~xxi�1 þ i~zzi _qqi 0M, 1A
i _~xx~xxi ¼ iRi�1

i�1 _~xx~xxi�1 þ i~zzi€qqi þ i ~xxi�1ði~zzi _qqiÞ 10M, 7A
iXi ¼ i ~_xx_xxi þ i ~xx2

i 6M, 9A
i€~ss~ssi ¼ iRi�1½i�1€~ss~ssi�1 þ i�1Xi�1

i�1~ssi�1;i
 17M, 13A
i€~rr~rri ¼ i€~ss~ssi þ iXi

i~rri;i 9M, 9A

Step 2: In this step, Eqs. (9) and (10) of Section 2 are used, with a difference for the first of these
expressions where the acceleration of gravity has been eliminated because it was introduced in the
previous step.

For i ¼ 1; 2; . . . ; n, do
i~ffi ¼ mi

i
€~rr~rri 3M, 0A

i~tti ¼ iXi
iJi � iXi

iJið ÞT 15M, 15A

Step 3: In this step the generalized force or torque exerted by the actuators is calculated by ap-
plying expressions (14)–(16) by means of a regressive recursion. In the last recursion, the calcu-
lation of all the components of 1~vv1 is not necessary, since only the third component is required.
Therefore, only the calculation of this component is considered.

For i ¼ n� 1; n� 2; . . . ; 1, do
i~//i ¼ iRiþ1

iþ1~ffiþ1 þ iþ1~//iþ1

� �
8M, 7A

For i ¼ n; n� 1; . . . ; 1, do
j~vvj ¼ j~rrj;jj~ffj þ j~ssj;jþ1

j~//j þ j~ttj þ j Rjþ1
jþ1~vvjþ1 20M, 19A

For i ¼ 1; 2; . . . ; n, do

sj ¼ oj _~xx~xxj

o€qqj

� �T
j~vvj 0M, 0A

Table 1 shows the computational complexity of the proposed algorithm and a comparison with
the complexity of other well-known algorithms.

Table 1

Inverse dynamic problem, complexity of the algorithms

Authors Principle Products (n ¼ 6) Sums (n ¼ 6)

Luh et al. [14] N–E 150n� 48 (852) 131n� 48 (738)

Angeles et al. [17] Kane 105n� 109 (521) 90n� 105 (435)

Balafoutis and Patel [23] N–E 93n� 69 (489) 81n� 66 (420)

This work G–A 96n� 101 (475) 84n� 100 (404)

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 747

4.2. Algorithm for the generalized inertia matrix

In the following section we show a recursive algorithm Oðn2Þ for the calculation of the gen-
eralized inertia matrix, based on the formulation obtained in Section 3.
Step 1: Calculation of the composed mass, of the compound inertial tensor, and other time-

invariant quantities that can be calculate off-line. iHi is ith body inertial tensor referred to ith local
reference system.

Set:
Mn ¼ mn

For i ¼ n to 2, do:
Mi�1 ¼ mi�1 þMi 0M, 0A
i�1~cci�1 ¼ mi�1

i�1~rri�1;i�1 þMi
i�1~ssi�1;i 0M, 0A

i�1Hi�1 ¼ i�1Ii�1 � mi�1
i�1~rri�1;i�1

i�1~rri�1;i�1 0M, 0A
i�1Ei�1 ¼ i�1Hi�1 �Mi

i�1~ssi�1;i
i�1~ssi�1;i 0M, 0A

Step 2: Calculation of the j~ssi;j vectors:

For i ¼ 1 to n� 1,
for j ¼ iþ 1 to n, do

j~ssi;iþ1 ¼ jRj�1
j�1~ssi;iþ1 8M, 4A

For i ¼ n� 2 to 1,
for j ¼ n to iþ 2, do

j~ssi;j ¼ j~ssi;iþ1 þ j~ssiþ1;j 0M, 3A

Step 3: Recursive calculation of the oj _~xx~xxj=o€qqk vectors.

For i ¼ 1 to n, set
oj _~xx~xxj=o€qqj ¼ j~zzj 0M, 0A

For i ¼ 2 to n, set

oj _~xx~xxj=o€qqj�1 ¼ jRð1;3Þ
j�1

jRð2;3Þ
j�1

jRð3;3Þ
j�1

h iT
0M, 0A

For i ¼ 1 to n� 1,
for j ¼ iþ 2 to n, do

oj _~xx~xxj=o€qqi ¼ iRi�1ðoj�1 _~xx~xxj�1=o€qqiÞ 8M, 4A

Step 4: Calculation of the i~//i and
i�1~//i vectors, (the mi

i~rri;i product is calculated off-line).

For i ¼ n; n� 1 to 1, do
i~//iþ1 ¼ iRiþ1

iþ1~//iþ1 8M, 4A
i~//i ¼ i~cci þ i~//iþ1 0M, 3A

Step 5: In this step, the recursive calculation of the iwi tensors is performed. The similarity
transformation performs the calculations in an efficient way by decomposing the iRiþ1

iþ1wiþ1
iþ1Ri

product.

748 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

Set:
nwn ¼ nHn

For i ¼ n� 1 to 2, do
iwi ¼ iEi � i~ssi;iþ1

i~//iþ1 � i~ssi;iþ1
i~//iþ1

� �T

þ iRiþ1
iþ1wiþ1

iþ1Ri 31M, 40A

For i ¼ 1 only 1wð3;3Þ
1 entry is necessary. 13M, 11A

Step 6: Calculation of the elements of the main diagonal of the generalized inertia matrix.

For i ¼ 1 to n,
Dii ¼ ðoi _~xx~xxi=o€qqiÞTiwiðoi _~xx~xxi=o€qqiÞ 0M, 0A

Step 7: Calculation of the remaining elements of the generalized inertia matrix.

For j ¼ n to 2,
For k ¼ j� 1 to 1, do

Djk ¼ ðo j _~xx~xxj=o€qqkÞT jwj � j~ssk; jj ~//j

h i
ðoj _~xx~xxj=o€qqjÞ 7M, 6A

Table 2 shows the computational complexity of the proposed algorithm and a comparison with
the complexity of other algorithms from the best known methods.

The solution of the forward dynamic problem is completed with the calculation of the bias
vector and the solution of the linear system by means of Cholesky decomposition [25]. As
mentioned earlier, the algorithm to calculate the elements of the bias vector has been obtained
from the algorithm to solve the inverse dynamic problem developed in Section 4.1, with the only
difference between them being that the terms associated with the joint accelerations have been
eliminated. Thanks to this there is a slight reduction in the number of required algebraic oper-
ations as opposed to those required by the original algorithm. Table 3 shows the total complexity

Table 2

Complexity of several methods for calculating the generalized inertia matrix

Authors Method Products (n ¼ 6) Sums (n ¼ 6)

Walker and Orin [18] CRBA 12n2 þ 56n� 27 (741) 7n2 þ 67n� 56 (598)

Angeles and Ma [19] NOC n3 þ 17n2 � 21nþ 8 (710) n3 þ 14n2 � 16nþ 5 (629)

This work GA 11:5n2 þ 19:5n� 49 (482) 8:5n2 þ 31:5n� 69 (426)

Table 3

Total complexity of the proposed method for solving the forward dynamic problem

Products (n ¼ 6) Sums (n ¼ 6)

Calculation of D 11:5n2 þ 19:5n� 49 (482) 8:5n2 þ 31:5n� 69 (426)

Bias vector calculation 96n� 108 (468) 83n� 105 (393)

Cholesky dec. 1
6
n3 þ 1

2
n2 þ 1

3
n (56) 1

6
n3 þ 1

2
n2 þ 1

3
n (56)

Linear system solving n2 (36) n2 � n (30)

Total 1
6
n3 þ 13n2 þ 695

6
n� 157 (1042) 1

6
n3 þ 10n2 þ 683

6
n� 174 (905)

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 749

of the proposed method for solving the forward dynamic problem. Additionally, Table 4 shows a
comparison of this method’s complexity with that of other well-known methods.

5. Examples

In this section two examples are included. The first example is used to compare the results
obtained by our method to solve the forward dynamic problem, with the CRBA and the ABA
methods. In the second example, the motion of a PUMA robot is simulated by means of
the integration of the mathematical model of the system, to which the necessary torques have
been provided, so that the end effector of the manipulator makes a pre-established straight tra-
jectory.

5.1. Numerical stability of the proposed method for solving the forward dynamic problem

We use the first example proposed by Ascher et al. [22]. These authors used this example to
demonstrate that the ABA method is numerically more stable than the CRBA method. They
proposed a system made up of two bodies with very different dimensions with the purpose of
increasing the condition number of the generalized inertia matrix. Then, they solved the forward
dynamics problem with single precision, for a set of positions obtained by rotation, through a
complete turn of the second body. Fig. 1 shows a representation of the proposed manipulator.
Body 1 is bound to a coordinate inertial system by means of a revolute joint in O1. Body 2 is
joined to the previous one by means of a revolute joint (O2). The links are 0.02 m wide and their
lengths are: l1 ¼ 0:02 m, l2 ¼ 2:0 m. Their masses are: m1 ¼ 0:1 kg and m2 ¼ 10:0 kg. The pro-

Table 4

Computational cost to solve the forward dynamic problem for n ¼ 6

Authors Method Products Sums

Walker and Orin [18] CRBA 1627 1261

Featherstone [26] ABA 1533 1415

Angeles and Ma [19] NOC 1353 1165

This work GA 1042 905

Fig. 1. Manipulator with two degrees of freedom.

750 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

cedure contemplates the rotation of body 2 around O2 at two degree intervals until completing a
turn (180 steps). In this work the CRBA and ABA methods are compared with the method de-
veloped in Section 4.2 (GA). For each of the methods a FORTRAN program is written using
single precision numbers. The Gauss–Jordan elimination is used to solve the linear system for the
CRBA and GA methods. The acceleration due to gravity (9.81 m/s2) acts orthogonal to the length
of the links in Fig. 1 (y-axis), and the generalized forces are null.

Fig. 2 shows, as a continuous line, the results obtained by using single precision for each of the
methods. The dashed line shows the results calculated by using double precision. In the same
figure is depicted the variation in the condition number of the generalized inertia matrix observed
during the process. Additionally, Table 5 shows a comparison of the average and maximum
differences between the solutions in single and double precision for each of the methods. The
solution in double precision is denoted with the DP superscript, and the solution in single pre-
cision is denoted with the SP superscript.

As can be observed, the single precision results are closest to the double precision results in the
ABA and GA methods, and the CRBA method exhibits the largest average and maximum dif-
ferences. This is an indication that the operations done to find the generalized inertia matrix and

Fig. 2. Comparison of the accelerations obtained in joint 1 and variation of the condition number.

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 751

bias vector by the GA method developed in this work produce results that are numerically more
stable than those obtained by the CRBA method.

5.2. Simulation of the motion of a PUMA robot

In this example the simulation of the motion of a PUMA robot is proposed, whose terminal
element describes a straight trajectory, with constant attitude and constant velocity of 0.1 m/s.
The simulation starts from the position 0~rrO0;TCP t¼0 sj ¼ 0:50 0:00 0:05½
T m, with an inclination
(Z, Y, Z) of the local system related to body 6 given by 0� 90� 180�½
. After 5.0 s of motion the
terminal element reaches the position 0~rrO0;TCP t¼5 sj ¼ 0:62 0:30 0:11½
T m. In order to imple-

Table 5

Average and maximum differences in the acceleration of joint 1 for three methods

ABA CRBA GA

MaxDð€qqDP
2 � €qqSP

2 Þ rad/s2 0.497600 1.292200 0.5340020

Aver:Dð€qqDP
2 � €qqSP

2 Þ rad/s2 0.013240 0.2750630 0.0087611

Fig. 3. Initial, final position and trajectory.

752 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

ment the simulation proposed in this example, a simulation program was written in FORTRAN
based on the method explained in Section 4.2. The program written in double precision and runs
on a 400 MHz Pentium II PC. The linear system was solved using Cholesky decomposition and
the fourth/fifth order Runge–Kutta technique is used to integrate the differential equations. In the
integration process, a tolerance of 1� 10�6 is used and an interval of 0.1 s is employed. Fig. 3
shows the robot in the initial position; the planned trajectory; and the final position. In order to
obtain the generalized forces that cause the end effector to describe the programmed trajectory,
the inverse dynamic problem for every instant has been solved, using as input data the results of
the resolution of the inverse kinematic problem. Fig. 4 shows a block diagram of the procedure,
where the superscript ‘‘�’’ denotes the generalized coordinates, velocities, and accelerations ob-
tained by the numerical integration of the method developed in this work. Table 6 shows the
resulting average errors in angle, velocity and acceleration of the joints, compared with the results
of the inverse kinematics problem.

The same simulation is made by means of programs based on the CRBA and ABA methods
and in both cases the results are practically the same than with the GA method. The difference
among these methods that can be detected in this case is in the processing time required for the
simulation and in the number of times that the integration function is evaluated. Table 7 shows
these quantities for comparison.

Fig. 4. Block diagram of the procedure.

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 753

6. Conclusions

The G–A equations have been used for the formulation of new recursive algorithms for solving
the inverse dynamics problem and computing the generalized inertia matrix. The computationally
complexity of the proposed inverse dynamics algorithm is comparable with that of the most ef-
ficient algorithms that are known, as shown in Table 1. The proposed algorithm for the gener-
alized inertia matrix is Oðn2Þ order and because of the number of arithmetic operations involved,
it is computationally efficient, as shown in Table 2. In the algorithm, the terms of the generalized
inertia matrix are obtained by means of the Hessian matrix of the Gibbs function. This approach
takes full advantage of the Gibbs equations to develop a suitable novel formulation of the gen-
eralized inertia matrix for multi-body systems, particularly for robot manipulators. This approach
can be extended without the need of great computational efforts to closed loop chain manipu-
lators.

Two numerical examples have been carried out using the proposed algorithm (GA) and the best
known algorithms in the literature (CRBA and ABA). The results of these simulations are shown
in Section 5, where it can be observed that the GA method produces smaller errors than those of
the CRBA method, but a little larger than those of the ABA method, which is, according to
several authors (see [22] and [2]), the method that has the best numerical response. In addition,
from Table 7, the processing time of the GA method is the shortest one, since the proposed al-
gorithm has smaller computational complexity with respect to algorithms derived from the CRBA
and ABA methods.

References

[1] W.M. Silver, On the equivalence of Lagrangian and Newton–Euler dynamics of manipulators, Int. J. Rob. Res. 1

(1982) 60–70.

[2] R. Featherstone, D.E. Orin, Robot dynamics: equations and algorithms, Proceedings of the 2000 IEEE

International Conference on Robotics and Automation, San Francisco, 2000, pp. 826–834.

Table 6

Average differences in the results of the simulation

Joint Aver. qi � q�i
�� �� (rad) Aver. _qqi � _qq�i

�� �� (rad/s) Aver. €qqi � €qq�i
�� �� (rad/s2)

1 6:91878269 � 10�4 1:28209533 � 10�3 2:84439095 � 10�3

2 1:73972101 � 10�2 1:66087380 � 10�3 9:22318761 � 10�2

3 8:54693990 � 10�4 1:66087459 � 10�3 3:13261587 � 10�3

4 1:73972067 � 10�2 4:05637323 � 10�2 9:22318581 � 10�2

5 1:78259578 � 10�2 4:17630699 � 10�2 9:54221869 � 10�3

6 6:91878269 � 10�4 1:21908065 � 10�3 2:43724278 � 10�3

Table 7

Processing time and number of evaluations of the function for each method

CRBA ABM GA

Processing time (s) 0.65 0.71 0.59

Number of function evaluations 1122 1089 1092

754 V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755

[3] L. Pars, A Treatise on Analytical Dynamics, Ox Bow Press, Connecticut, 1972.

[4] E. Desloge, Relationship between Kane’s Equations and the Gibbs–Appell Equations, J. Guidance Control Dyn.

10 (1) (1986).

[5] D. Levinson, Comment on relationship between Kane’s equations and the Gibbs–Appell equations, J. Guidance

Control Dyn. 10 (6) (1987) 593.

[6] R.L. Huston, Comment on relationship between Kane’s equations and the Gibbs–Appell equations, J. Guidance

Control Dyn. 11 (2) (1988) 191.

[7] I. Sharf, G.M.T. D’eleuterio, P.C. Hughes, On the dynamics of Gibbs Appell and Kane, Eur. J. Mech. A/Solids 11

(2) (1992) 145–155.

[8] F.E. Udwadia, R.E. Kalaba, The explicit Gibbs–Appell equation and generalized inverse forms, Quarterly of

Applied Mathematics LVI (2), June, 1998, pp. 277–288.

[9] M. Vukobratovic, V. Potkonjak, Applied Dynamics and CAD of Manipulation Robots, Springer-Verlag, Berlin,

1985.

[10] K. Desoyer, P. Lugner, Recursive formulation for the analytical or numerical application of the Gibbs–Appell

method to the dynamics of robots, Robotica 7 (1989) 343–347.

[11] A.F. Vereshchagin, Computer simulation of the dynamics of complicated mechanisms of Robotic manipulators,

Eng. Cyber. 6 (1974) 65–70.

[12] I. Rudas, A. Toth, Efficient recursive algorithm for inverse dynamics, Mechatronics 3 (2) (1993) 205–214.

[13] V. Mata, S. Provenzano, J.I. Cuadrado, F. Valero, An O(n) algorithm for solving the inverse dynamic problem in

robots by using the Gibbs–Appell formulation, Proceedings of Tenth World Congress on Theory of Machines and

Mechanisms, 3 Oulu, Finland, 1999, pp. 1208–1215.

[14] J.Y.S. Luh, M.W. Walker, R.P. Paul, On-line computational scheme for mechanical manipulators, J. Dyn. Syst.

Meas. Control 102 (1980) 69–79.

[15] J.M. Hollerbach, A recursive Lagrangian formulation of manipulator dynamics and a comparative study of

dynamics formulation complexity, IEEE Trans. Syst. Man Cyber. (1980) 730–736.

[16] T. Kane, D. Levinson, The use of Kane’s dynamical equations in Robotic, Int. J. Rob. Res. 2 (3) (1983) 3–21.

[17] J. Angeles, O. Ma, A. Rojas, An algorithm for the inverse dynamics of n-axis general manipulators using Kane’s

equations, Comp. Math. Appl. 17 (12) (1989) 1545–1561.

[18] M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of Robotic mechanisms, J. Dyn. Syst. Meas.

Control 104 (1982) 205–211.

[19] J. Angeles, O. Ma, Dynamic simulation of n-axis serial Robotic manipulators using a natural orthogonal

complement, Int. J. Rob. Res. 7 (5) (1988) 32–47.

[20] R. Featherstone, The calculation of robot dynamics using articulated-body inertias, Int. J. Rob. Res. 2 (1) (1983)

13–30.

[21] S.K. Saha, A decomposition of the manipulator inertia matrix, IEEE Trans. Rob. Autom. 13 (2) (1997) 301–304.

[22] U.M. Ascher, D.K. Pai, B.P. Cloutier, Forward dynamics elimination methods, and formulation stiffness in robot

simulation, Int. J. Rob. Res. 16 (6) (1997) 749–758.

[23] C.A. Balafoutis, R.V. Patel, Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach, Kluwer

Academic Press, Boston, 1991.

[24] J. Angeles, Fundamentals of Robotic Mechanical Systems, Springer Verlag, New York, 1997.

[25] T.J. Akai, M�eetodos num�eericos aplicados a la ingenier�ııa, Limusa, M�eexico, 1999.

[26] R. Featherstone, Robot dynamics algorithms, Kluwer Academic, Boston, 1987.

V. Mata et al. / Mechanism and Machine Theory 37 (2002) 739–755 755

	Serial-robot dynamics algorithms for moderately large numbers of joints
	Introduction
	The inverse dynamic problem
	The forward dynamic problem
	Proposed algorithms
	An algorithm to solve the inverse dynamic problem
	Algorithm for the generalized inertia matrix

	Examples
	Numerical stability of the proposed method for solving the forward dynamic problem
	Simulation of the motion of a PUMA robot

	Conclusions
	References

